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Abstract. In this paper we characterize the positive definite measures with discrete

Fourier transform. As an application we provide a characterization of pure point diffraction

in locally compact Abelian groups.

1. Introduction

Physical quasicrystals were discovered in 1984 by Shechtman/Blech/Gratias/Cahn and

independently in 1985 by Ishimasa/Nissen/Fukano. They are aperiodic solids having an

essentially discrete diffraction diagram.

The mathematical framework for diffraction was set in the 1990’s by Hof [9]. Given a point

set Λ, which represents the positions of the atoms in a solid, its autocorrelation measure γ

(see below for a precise definition) is a positive and positive definite measure. The Fourier

transform γ̂ of γ is called the diffraction pattern of Λ. If γ̂ is a discrete measure, we say

that Λ is pure point diffractive. The key to understanding the structure of quasicrystals is

the understanding of pure point diffraction.

Gil de Lamadrid and Argabright [10] showed that discreteness of γ̂ is equivalent to strong

almost periodicity of γ, and this holds in the setting of arbitrary locally compact Abelian

groups. As a consequence we get that pure point diffraction is equivalent to the strong

almost periodicity of the corresponding autocorrelation measure. However, this type of

almost periodicity is generally hard to check and one would like to relax this condition. For

weighted Dirac combs with Meyer support, and in particular for point sets verifying the

Meyer condition, Baake/Moody [3] proved that pure point diffraction is equivalent to norm-

almost periodicity of the autocorrelation measure. For Meyer sets the almost periodicity

of the autocorrelation has been replaced by the almost periodicity of the underlying set in

a suitable topology by Moody/Strungaru [13] and this has been generalized to arbitrary

point sets in Rd by Gouéré [7]. Gouéré also proved that for a Delone set Λ ⊂ Rd, with

autocorrelation measure γ, pure point diffraction is equivalent with the condition:

• For all R > 0 and all ε > 0 the set {t ∈ Rd | γ(t + BR(0)) ≥ γ({0}) − ε} is

relatively dense.

While this condition is easy to understand, Gouéré’s proof is based on the Schwartz class

of functions and thus on the geometry of Rd.
The goal of this paper is to generalize this equivalence from the case of Rd to an arbitrary

locally compact Abelian group G (and in some sense, beyond point sets). In Theorem 5.4 we
1
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prove that for Delone sets in arbitrary locally compact Abelian groups, pure point diffraction

is equivalent to the following condition:

• For all sets V in a basis of precompact open neighborhoods of 0 and all ε > 0 the

set {t ∈ G | γ(TtV ) > γ({0})− ε} is relatively dense.

Along the way we get a more general result about the discreteness of the Fourier transform

of a positive definite measure, which might be of independent interest.

The main tools used in this paper are the equivalence of strong almost periodicity of

the autocorrelation and pure point diffraction [10], as well as Krein’s inequality for positive

definite functions [4].

The paper is organized as follows: In Section 2 we introduce the concept of almost

periodicity and its connection to the discreteness of the Fourier transform. We also introduce

Krein’s inequality. In Theorem 3.3 we provide a new characterization for the discreteness of

the Fourier transform of a positive definite measure, while in Section 4 we show that if the

measure is also positive and has 0 as an isolated point for its support, then the conditions

in Theorem 3.3 can be simplified. In Section 5 we introduce the reader to the diffraction

theory and see how Theorem 3.3 and Theorem 4.2 can be used to characterize pure point

diffraction.

2. Preliminaries

Throughout the paper, G denotes a locally compact Abelian group. We will denote by

CU (G) the space of bounded and uniformly continuous functions on G, and by Cc(G) the

space of compactly supported continuous functions on G.

Definition 2.1. For a function f on G, f †1 and f̃ denote the functions defined by:

f †(x) = f(−x) and f̃(x) = f †(x) = f(−x) ∀x ∈ G .

Definition 2.2. For f, g ∈ Cc(G) their convolution is defined by

f ∗ g(x) =

∫
G
f(x− t)g(t)dt .

The convolution of a function f ∈ Cc(G) and a measure µ is the function f ∗ µ defined

by

f ∗ µ(x) =

∫
G
f(x− t)dµ(t) .

The almost periodic functions were first introduced by Bohr on the real line, and later

generalized to arbitrary locally compact groups. We recall the standard definition of an

almost periodic function.

1The author is not familiar with any standard notation for this operator. Argabright and de Lamadrid

[10] denote this function by f ′, Berg and Forest [4] use the f̌ notation, while Hewwit and Ross [8] are using

f?.
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Definition 2.3. A function f ∈ CU (G) is called almost periodic if the set

{t ∈ G | ‖f − Ttf‖∞ < ε} ,

is relatively dense for each ε > 0, where Ttf(x) := f(x− t).

The importance of almost periodicity in the study of discreteness of the Fourier transform

was observed by Eberlein, who proved that a finite measure is discrete if and only if its

Fourier transform is an almost periodic function [6]. This result was later generalized to

unbounded measures by Argabright and de Lamadrid in the following way:

Theorem 2.4. [10] For a Fourier transformable translation bounded measure µ the follow-

ing are equivalent:

i) µ is a discrete measure,

ii) For all f ∈ Cc(Ĝ) the function f ∗ µ̂ is an almost periodic function.

Crystallographers are interested in the Fourier dual of this result. Thus we have to make

an extra assumption, namely that the measure µ is double Fourier transformable (i.e. µ is

Fourier transformable, and its Fourier transform µ̂ is also Fourier transformable). This is

usually the case, since the autocorrelation measure is usually positive and positive definite

(see Section 5), thus double Fourier transformable by [4]. Hence, by applying Theorem 2.4

to the inverse Fourier transform of µ we get :

Proposition 2.5. For a double Fourier transformable measure µ the following are equiva-

lent:

i) µ̂ is a discrete measure,

ii) For all f ∈ Cc(G) the function f ∗ µ is an almost periodic function.

An immediate consequence of this is:

Proposition 2.6. Let µ be a double Fourier transformable measure with discrete Fourier

transform. Then, for all f ∈ Cc(G) and all ε > 0, the set

(1) {t ∈ G|Re (µ(Ttf)) > Re (µ(f))− ε}

is relatively dense.

In general the reverse is not true, but in the case of positive definite functions, Krein’s

inequality provides the link to proving that equivalence holds in Proposition 2.6.

Proposition 2.7. (Krein’s inequality) Let f be a positive definite function on G. Then,

for all x, t ∈ G we have:

(2) |f(t+ x)− f(x)|2 ≤ 2f(0)[f(0)− Re f(t)] .

In particular

‖f − Ttf‖2∞ ≤ 2f(0)[f(0)− Re f(t)] .
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3. Positive definite measures

As we mentioned in the introduction, we will try to simplify the condition in Theorem 2.4

by using Krein’s inequality for positive definite functions. Given a positive definite measure

µ, we will convolve it with a function of the type f ∗ f̃ and get a positive definite function.

Proposition 2.7 will give a simpler characterization for the ε-almost periods of µ ∗ f ∗ f̃ . In

order to use Theorem 2.4 we only need f ∗ f̃ ∈ Cc(G), thus we only need to assume that f

is compactly supported and an L2 function on G [8].

We will denote by BCL(G) the set of bounded, compactly supported L2 functions on G.

That is:

BCL(G) := {f : G→ C|‖f‖∞ <∞ , ‖f‖2 <∞ and supp(f) is compact } .

Let ∆ : BCL(G)→ Cc(G) be defined by:

∆(f) := f ∗ f̃ .

For a precompact, open set U , we will denote by ∆(U) the function:

∆(U) := ∆(1U ) .

It is clear that ∆(f) is always positive definite, and if f ≥ 0 then ∆(f) ≥ 0.

Definition 3.1. A subset U ⊂ BCL(G) is called Fourier separable if for any open

precompact set V ⊂ Ĝ there exists f ∈ U so that f̂ doesn’t vanish on V .

Lemma 3.2. Let µ be a double Fourier transformable positive definite measure and let

U ⊂ BCL(G) be a Fourier separable set. Then the following are equivalent:

i) µ̂ is a discrete measure,

ii) For all f ∈ U and all ε > 0, the set

{t ∈ G|Re [µ(Tt∆(f))] > µ(∆(f))− ε}

is relatively dense.

Proof: The implication i)⇒ ii) follows from Proposition 2.6.

ii)⇒ i)

Fix an f ∈ U . Since both µ and ∆(f †) are positive definite, ∆(f †)∗µ is a positive definite

function, thus we can use Krein’s inequality :

(3)
∣∣∣∆(f †) ∗ µ(t+ s)−∆(f †) ∗ µ(s)

∣∣∣2 ≤ 2∆(f †) ∗ µ(0)[∆(f †) ∗ µ(0)− Re (∆(f †) ∗ µ(t))] ,

for all s, t ∈ G.

Since

∆(f †) ∗ µ(t) =

∫
G

∆(f †)(t− s)dµ(s) =

∫
G

∆(f)(s− t)dµ(s) = µ(Tt∆(f)) .
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Let ε > 0. Then, by ii), the set

R := {t ∈ G|µ(∆(f))− Re (µ(Tt∆(f))) <
ε2

2µ ∗∆(f)(0) + 1
} ,

is relatively dense. Combining with (3), we get that the set

{t ∈ G|‖∆(f †) ∗ µ− Tt(∆(f †) ∗ µ)‖∞ < ε} ,
is relatively dense.

Thus, since ε > 0 was arbitrary, ∆(f †) ∗ µ is an almost periodic function.

Then, for all g ∈ Cc(G), the function ∆(f †)∗µ∗g is almost periodic (see [10] for example).

Thus, the measure ∆(f †) ∗ µ is Fourier transformable (since positive definite) and verifies

condition ii) from Proposition 2.5. Therefore, its Fourier transform
∣∣∣f̂ †∣∣∣2 µ̂ = (

∣∣∣f̂ ∣∣∣2)†µ̂ is a

discrete measure.

Since (
∣∣∣f̂ ∣∣∣2)†µ̂ is a discrete measure for all f ∈ U , by the Fourier separability assumption,

µ̂ is a discrete measure. �
Using the fact that the set {1U |U ⊂ G precompact open set} is Fourier separable, by

combining Proposition 2.6 and Lemma 3.2 we get:

Theorem 3.3. Let µ be a double Fourier transformable positive definite measure, let V be

a fixed basis of precompact open sets on G and U ⊂ BCL(G) be a Fourier separable set.

The following are equivalent:

i) µ̂ is a discrete measure,

ii) For all precompact open sets U and all ε > 0 the set

{t ∈ G | Re [µ(t+ ∆(U))] > µ(∆(U))− ε} ,

is relatively dense,

iii) For all open sets U ∈ V and all ε > 0 the set

{t ∈ G | Re [µ(t+ ∆(U))] > µ(∆(U))− ε} ,

is relatively dense.

iv) For all f ∈ Cc(G) and all ε > 0 the set

{t ∈ G | Re [µ(Tt∆(f))] > µ(∆(f))− ε} ,

is relatively dense.

v) For all f ∈ BCL(G) and all ε > 0 the set

{t ∈ G | Re [µ(Tt∆(f))] > µ(∆(f))− ε} ,

is relatively dense.

vi) For all f ∈ U and all ε > 0 the set

{t ∈ G | Re [µ(Tt∆(f))] > µ(∆(f))− ε} ,

is relatively dense.
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An immediate consequence of this result is:

Corollary 3.4. If the group G has a function f ∈ BCL(G) with nowhere vanishing Fourier

transform, then for all the double Fourier transformable positive definite measures µ on G

the following are equivalent:

i) µ̂ is a discrete measure,

ii) For all ε > 0 the set

{t ∈ G | Re [µ(Tt∆(f))] > µ(∆(f))− ε} ,

is relatively dense.

4. Positive and positive definite measures

For this section µ is a positive and positive definite measure for which 0 is an isolated

point of its support. That is, there exists an open neighborhood U of 0 so that

µ|U = µ({0})δ0 .

The following is a weaker version of Proposition 2.6:

Lemma 4.1. Let V be an open neighborhood of 0. If µ̂ is a discrete measure then, for all

ε > 0, the set

{t ∈ G|µ(TtV ) > µ({0})− ε}

is relatively dense.

Proof: Let f ∈ Cc(G) be such that f ≤ 1V and f(0) = 1. Since µ̂ is a discrete measure,

f̃ ∗ µ is an almost periodic function, hence the set

P := {t ∈ G|‖f̃ ∗ µ− Tt(f̃) ∗ µ‖∞ < ε} ,

is relatively dense.

Let’s observe that for all t ∈ P we have

|µ(f)− µ(Ttf)| < ε .

In particular,

µ(TtV ) ≥ µ(Ttf) > µ(f)− ε ≥ µ({0})f(0)− ε = µ({0})− ε .

�
In the remainder of this section we will prove that, under the settings from the beginning of

the section, the converse in Lemma 4.1 is also true. The main idea is that for all f ∈ BCL(G)

such that supp(f) − supp(f) ⊂ U we have µ(∆(f)) = µ({0})(∆(f)(0)). Thus, in Theorem

3.3 iv) we can replace µ(∆(f)) with µ({0})(∆(f)(0)). Also, since µ is positive, it preserves

inequalities and this allows us to switch between functions and small open sets in Theorem

3.3, vi).
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Theorem 4.2. Let µ be a positive and positive definite measure such that 0 is an isolated

point of its support, and V a fixed basis of precompact open neighborhoods of 0. Then the

following are equivalent:

i) µ̂ is a discrete measure,

ii) For all W precompact open neighborhoods of 0 and all ε > 0 the set

{t ∈ G | µ(TtW ) > µ({0})− ε} ,

is relatively dense,

iii) For all V ∈ V and all ε > 0 the set

{t ∈ G | µ(TtV ) > µ({0})− ε} ,

is relatively dense.

Proof: The implication i) ⇒ ii) follows from Lemma 4.1, while ii) ⇒ iii) is clear. We

prove now iii)⇒ i):

Let U := {f ∈ Cc(G)|f ≥ 0 , f 6≡ 0 , supp(f ∗ f̃) ⊂ U}.
Let f ∈ U and 0 < ε < ∆(f)(0). Since ∆(f) is continuous at 0, there exists a V ∈ V so

that

|∆(f)(x)−∆(f)(0)| < ε∀x ∈ V .
Hence,

∆(f) ≥ (∆(f)(0)− ε)1V .
We know by iii) that the set R := {t ∈ G | µ(TtV ) > µ({0})− ε

|∆(f)(0)−ε|+1} , is relatively

dense. Let now t ∈ R.

Then,

Re [µ(Tt∆(f))] = µ(Tt∆(f)) ≥ (∆(f)(0)− ε)µ(Tt1V )

> (∆(f)(0)− ε)µ({0})− ε = µ(∆(f))− ε(1 + µ({0})
= Re [µ(∆(f))]− ε(1 + µ({0}))

So, if we show that U is a Fourier separable set, the equivalence vi)⇔ i) in Theorem 3.3

completes the proof.

Let V ⊂ Ĝ be an open precompact set and let K be its closure. Since G is the dual group

of Ĝ and V is a basis of open sets at 0, there exists a W ∈ V so that W −W ⊂ U and

W ⊂ N(K, 1/4) := {x ∈ G| |< x, χ > −1| < 1/4 ∀χ ∈ K} .
Since the Haar measure θ

Ĝ
is regular, there exists a compact set K1 ⊂W so that

θ
Ĝ

(K1) > 4/5θ
Ĝ

(W ) .

We know that there exists a continuous function f with 1W ≥ f ≥ 1K1 . Then f ∈ U , and

for all χ ∈ K we have
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Re[f̂(χ)] = Re[

∫
G
f(x)χ(x)dx] =

∫
W
f(x)Re[χ(x)]dx

=

∫
K1

f(x)Re[χ(x)]dx+

∫
W\K1

f(x)Re[χ(x)]dx

≥
∫
K1

Re[χ(x)]dx+

∫
W\K1

f(x)Re[χ(x)]dx

≥
∫
K1

3/4dx−
∫
W\K1

1dx = 3/4θ
Ĝ

(K1)− θ
Ĝ

(W\K1)

= 7/4θ
Ĝ

(K1)− θ
Ĝ

(W ) > 0

Thus,

Re[f̂(χ)] 6= 0∀χ ∈ K .

�

5. Diffraction Theory

5.1. A Short Review. Recall that a measure ν is called translation bounded (or shift

bounded) if for all compact sets K ⊂ G, there exists a constant CK <∞ so that

(4) ‖ν‖K := sup
t∈G
{|ν| (t+K)} ≤ CK .

It is easy to see that ν is translation bounded if and only if (4) holds for one compact set

K with non-empty interior.

For some C > 0 and some compact set K with non-empty interior we denote by

MC,K(G) := {ν|‖ν‖K ≤ C} .

By [2] MC,K(G) is vaguely compact.

A van Hove sequence is a sequence of compact sets Bn ⊂ G with the property that for

all compact sets K ⊂ G

lim
n→∞

θG(∂K(Bn))

θG(Bn)
= 0 ,

where the K-boundary is defined by:

∂K(Bn) = ((Bn +K)\Bn) ∪ ((G\Bn −K) ∩Bn) .

For a point set M we define the measure δM by

δM :=
∑
x∈M

δx .

Given a Delone set Λ, the sequence

(5)
δΛ∩Bn ∗ δ̃Λ∩Bn

θG(Bn)
,
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lives in some MC,K(G) and thus has a vague cluster point γ(Λ). We will call any such

cluster point γ(Λ) an autocorrelation measure of Λ. γ(Λ) is a positive and positive

definite measure, and thus double Fourier transformable. Its Fourier transform is called a

diffraction measure for Λ.

More generally we can define an autocorrelation of a translation bounded measure ν as a

vague cluster point of

(6)
ν|Bn ∗ ν̃|Bn

θG(Bn)
.

Again, such a cluster point exist because all these measures belong to some MC,K(G).

Moreover, any cluster point is positive definite, and thus Fourier transformable.

Note that in both cases, by going to a van Hove subsequence of {Bn}, we can assume

that γ is the limit of (5) or (6).

5.2. Pure Point diffraction.

Definition 5.1. A measure ν, with an autocorrelation γ(ν), is called pure point diffrac-

tive if the diffraction measure γ̂(ν) is a discrete (pure point) measure. A Delone set Λ is

called pure point diffractive if the corresponding measure δΛ is pure point diffractive.

Remark 5.2. The definition of pure point diffractiveness depends on the choice of the

cluster point in the definition of the autocorrelation. So, whenever we say that Λ or ν is

pure point diffractive, we understand that Definition 5.1 holds for Λ or ν and our choice of

the autocorrelation. For an example, see Example 5.9 below.

Given a translation bounded measure ν with an autocorrelation γ which verifies the

assumptions from Section 4, Theorem 4.2 gives us:

Proposition 5.3. Let ν be a translation bounded measure with an autocorrelation γ. Let

V be a fixed basis of precompact open neighborhoods of 0. If γ is positive and has 0 as an

isolated point for its support, then the following are equivalent:

i) Λ is pure point diffractive,

ii) For all V precompact open neighborhoods of 0 and all ε > 0 the set

{t ∈ G | γ(TtV ) > γ({0})− ε} ,

is relatively dense,

iii) For all V ∈ V and all ε > 0 the set

{t ∈ G | γ(TtV ) > γ({0})− ε} ,

is relatively dense.

In particular, since the autocorrelation of a Delone set always verifies these assumptions,

we get:
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Theorem 5.4. Let Λ be a Delone set with an autocorrelation γ. Let V be a fixed basis of

precompact open neighborhoods of 0. Then the following are equivalent:

i) Λ is pure point diffractive,

ii) For all V precompact open neighborhoods of 0 and all ε > 0 the set

{t ∈ G | γ(TtV ) > γ({0})− ε} ,

is relatively dense,

iii) For all V ∈ V and all ε > 0 the set

{t ∈ G | γ(TtV ) > γ({0})− ε} ,

is relatively dense.

Remark 5.5. Theorem 5.4 also holds for positive weighted Dirac combs with uniformly

discrete support.

For the diffraction of a general translation bounded measure, by Theorem 3.3 we also get:

Theorem 5.6. Let ν be a translation bounded measure with double Fourier transformable

autocorrelation γ and let U be a fixed basis of precompact open sets. If γ has 0 as an

isolated point for its support, then the following are equivalent:

i) ν is pure point diffractive,

ii) For all precompact open sets U and all ε > 0 the set

{t ∈ G | Re [γ(t+ ∆(U))] > γ(∆(U))− ε} ,

is relatively dense,

iii) For all open sets U ∈ U and all ε > 0 the set

{t ∈ G | Re [γ(t+ ∆(U))] > γ(∆(U))− ε} ,

is relatively dense.

iv) For all f ∈ Cc(G) and all ε > 0 the set

{t ∈ G | Re [γ(Tt∆(f))] > γ(∆(f))− ε} ,

is relatively dense.

v) For all f ∈ BCL(G) and all ε > 0 the set

{t ∈ G | Re [γ(Tt∆(f))] > γ(∆(f))− ε} ,

is relatively dense.

Example 5.7. Let Λ := Z. A simple computation shows that the autocorrelation of Λ is

γ := δZ. Then for each 0 ∈ U ⊂ R open and each ε > 0 we have

γ(t+ U) ≥ γ({t}) = 1 > 1− ε = γ({0})− ε ∀t ∈ Z .

Hence Λ = Z is pure point diffractive, which is not surprising since it is known that the

diffraction of Z is γ̂ = δZ.
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Example 5.8. Let Λ ⊂ Z be constructed the following way: for each t ∈ Z we keep t with

probability 1/2. Such an Λ is called a Bernoulli set.

Let {Bn}n be a van Hove sequence.

Then,

δΛ|Bn ∗ δ̃Λ|Bn

vol(Bn)
=
∑
t∈Z

]{(x, y)|x, y ∈ Λ ∩Bn, x− y = t}
vol(Bn)

δt

=
∑
t∈Z

]{y ∈ Z|y, y + t ∈ Λ ∩Bn}
vol(Bn)

δt .

Note that we count how many times on average y and t+y belong to Λ. If t ∈ Z\{0}, the

two events are independent, so the probability that y, t+ y are simultaneously in Λ is 1/4.

If t = 0, then we only have one condition, namely y ∈ Λ, which happens with probability

1/2.

Thus, for almost surely all Bernoulli sets Λ, the autocorrelation is

γ =
1

2
δ0 +

1

4

∑
t∈Z∗

δt =
1

4
δ0 +

1

4
δZ .

It is easy to see that for all open sets U with diameter less than 1/4 and all t ∈ R we have

γ(t+ U) ≤ 1

4
= γ({0})− 1

4
.

Hence, almost surely all Bernoulli sets are not pure point diffractive.

The reason we only get an almost surely statement is because, with probability zero, we

could still get a point set like Λ = 2Z (which is pure point diffractive).

Example 5.9. Let Λ := [Z ∩ (0,∞)] ∪ [Λ′ ∩ (−∞, 0]], where Λ′ is a Bernoulli set. Let

B2n := [−n2, n] , B2n+1 := [−n, n2] .

Then, almost surely, Λ has two autocorrelations with respect to the van Hove sequence

Bn: γ1 = δZ given by {B2n+1} and γ2 = 1
4(δ0 + δZ) given by {B2n}.

Note that Λ is pure point diffractive when we chose the first autocorrelation but not

when we chose the second. Also note that when we chose the first autocorrelation we get

the diffraction of Z, while when we chose the second we get the diffraction of a generic

Bernoulli set.

Also note that every real solid which is modeled by this set has arbitrary large subsets

with different statistical properties. Thus, if one chooses a sample to diffract, the diffraction

depends on whether the sample is chosen from the left or right side of 0. Different large

samples will have different diffraction patters.
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